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The critical behavior of the layer magnetizations and local susceptibilities of the 
D-vector lattice models with Kac-type ferromagnetic interactions for a semi- 
infinite system is studied. These local quantities behave less singularly than the 
bulk ones, showing that this is not peculiar to the two-dimensional Ising model. 
Moreover, the limiting form (at the critical point) of the magnetization profile 
can be obtained, which, when properly scaled, satisfies the minimum condition 
in the Landau theory for a semi-infinite continuous system. Landau-type critical 
behavior is thus recovered. 
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1. I N T R O D U C T I O N  

A great deal of interest has been devoted recently to the study of the critical 
behavior  of semi-infinite systems, especially via scaling or renormatization 
group arguments  (see, e.g., Ref. 1, and  references therein). The main 
prediction concerning semi-infinite systems is that  local thermodynamic  
quantities near the surface (for instance, the magnetizat ion of the boundary  
layer in ferromagnetic lattice spin systems) should have critical indices 
different f rom the corresponding bulk quantities. The only rigorous result 
in this direction has been obtained for the two-dimensional Ising model 
with nearest-neighbor interactions by M c C o y  and Wu, (2~ who have found 
that the boundary  row magnetizat ion vanishes as (T  c - T) 1/2, in contradis- 
tinction to the ( T  c - T )  1/8 behavior  of the bulk spontaneous magnetization. 

In  order to lend support  to the fact that  such peculiar behavior  is 
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general, it is interesting to see whether it can be put into evidence on other 
rigorously tractable models. In this paper, we shall consider a class of 
mean-field models sensitive to the geometry of the system for which a 
complete description of the critical behavior can be obtained. 

We shall briefly describe the models under consideration following 
Pearce. (3) Consider the D-vector model Hamiltonian with Kac-Helfand 
interaction (4) for a rectangular array of N • n spins of length D 1/2. 

/* ,v= 1 i,j~l k t = l  i = 1  

where J~") = 48~j + 8~,j+ 1 + 6q_l,  1 ~< i,j < n, and H~ has equal compo- 
nents Hi in the spin space. Denote 

+ ~ : ' ( / ~ ; { H i } ) =  lim lim ( 1 ) logTrexp(- t~qc(")  v'-~o N~o~ \ flNnD ~" "'w,rdv ) 

~(on)(fi; (Hi}) will be taken as the free energy per spin and per spin 
component, defining the Kac-type D-vector model for a slab with n layers. 
Its D ~ oe limit, +~), defines the Kac-type spherical model. (Let us remark 
that the order of the D-~  oe and 7 "~ 0 limits can be reversed, as seen by 
combining arguments in Refs. 3 and 5.) The existence of the ,/--~ 0 limit is 
proved in Ref. 3, where, as expected from the D -- 1 case, (6) the following 
expression is obtained: 

f l~ '0(/~;  {Hi }) = ,n~R ~min l[n ~ (m'J(")m)- i=lkffO(~(J(n'D'l)i'~-~Hi) 1 
where 

(2) 

~-t(H ) = log(2 cosh H )  (3) 

1 2 % ( / - / )  = 5 log e a . o ( s )  
D 

_ 1 log 1 ('~e o/4 cos 0 sin o -  2 0 dO, 
D B 0 / 2 , ( D  - 1 ) /2 )  .0 

2 < O < m (3') 

~ 1 8 9  ' / 2 -  1 - 1 o g � 8 9  +4HZ) ' / 23 )  (3") 

[In (3'), S o is the sphere of radius D 1/2 in R o, d/~o its natural (normalized) 
measure, and B(., .) is the beta function.] 

The detailed study of the minimum in Eq. (2) will be performed in 
Section 2, with the result that the minimum is attained in a unique point 
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m(n~(fi, H ) ~  R(+ n) (R+ =[0,  oo));mi (n~ can be identified with the layer 
magnetizations, i.e., 

mi(n)(fi, H)  = l i ra  lim ( S ~ )  
y--~0 N ---~ oo 

Different properties of the magnetizations and susceptibilities X~ n~= 
Orn}n)/~Hj in zero magnetic field will also be given. The argument follows 
partially, though with some simplifications, that previously given for the 
D = 1 case. (7) 

The semi-infinite system is obtained in Section 3 (restricting attention 
to H = 0) as a limit of slabs of finite thickness. Namely, it will be shown 

�9 n ( n )  that lim,__,o~m} n)= mi, lim,__,o~X~}')=XO., and llm,__,oo~j=lXs), do exist. 
These local quantities are to be compared to the global (bulk)quantities: 
lim,__,oo(1/n)~,7=lm} ")= m e and lim,_,oo(1/n)~7,j=~X~.")=X,. As ex- 
pected, m B = limi__,o~m i and X, = limi--,oo~j~=lXo . The surface free energy 
exists and can be obtained explicitly in terms of m~. 

Section 4 is devoted to the critical behavior of the above-mentioned 
quantities. We find that the local quantities, such as m~, X,y, o r  2j~ IX 0. are 
less singular than the global ones. While the critical indices of the local 
quantities appear to be independent of the distance from the boundary, the 
magnitudes of their leading asymptotic terms go to infinity with this 
distance, showing that the two limits cannot be interchanged. The way in 
which the boundary critical behavior turns into bulk critical behavior deep 
into the bulk is explicitly shown to be 

mk ----- mstanh ~[f fl -~c-- t~c l/2k ' where m e ~ ~ 

This is in fact the scaling ansatz usually made in studying the critical 
behavior of systems with surfaces. 

It should be noted that this expression of the layer magnetization valid 
in the critical region, is precisely the same as that obtained in Landau-type 
theory in the limit of the "extrapolation length" X, going to zero. (In our 
case the interaction constants in the surface and the bulk are the same. For 
an exposition of Landau theory for semi-infinite systems see, for instance, 
Ref. 1.d.) This shows that the correspondence between Kac-type theory and 
Landau theory does work not only for "global" critical behavior, but also 
for the "local" one. However, we have not been able to get the magnetiza- 
tion profile outside the critical region to check this correspondence any 
further. Actually, obtaining the magnetization profile for lattice models 
even in the critical region is not a trivial problem and there is little hope to 
solve it for any temperature in the ferromagnetic phase. 

Section 5 is devoted to a discussion of some problems which we leave 
for future study and of possible contacts with other approaches. 
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2. THE DESCRIPTION OF THE FINITE SLAB 

In order to study the minimum in Eq. (2), some properties of the 
functions ~ D (.) will be needed. These will follow easily by remarking that 
~-D (H) is (up to factors) the free energy of a single D-dimensional spin in 
an external magnetic field H with equal components H. 

and 
Proposition 2 . 1 .  ~D: R ~ R  are nonnegative, even C ~ functions, 

(i) oy~ (x) > 0 for x > 0, and limx__,~- ~ (x) = 1 
(ii) ~-~ (x) > 0, Vx ~ R, and oy~ (0) = 1 
(iii) ~ < 0 for x > 0. 

Proof. For D < ~ ,  the inequalities in (i) and (ii) are nothing but 
Griffiths' first and second inequalities and, in fact, can be easily checked in 
Eqs. (3), from which lim ~-~ and ~Y~ (0) follow as well. Property (iii) is a 
GHS inequality and is proved by remarking that, changing the variable to 
o = cos 0 in Eq. (3'), one gets the free energy of a continuous Ising spin with 
a priori distribution meeting the conditions of Ellis and Newman. (8) For ~-= 
these follow by inspection. �9 

As a consequence of the properties (i) and (ii), 6)- 0 (x) grows linearly 
for Ixl---> m, so the function to be minimized in Eq. (2) has indeed a 
minimum point, which is necessarily one of its stationary points. Taking 
advantage of the invertibility of J("),  we can write the stationarity condi- 
tion as 

m i = ~ 3 ' D ( f l ( J ( " ) m ) i + f l H i ) ,  'q ' i  = 1 . . . . .  n (4) 

As _1_~ (x)_J_ < 1 from Proposition 2.1, all the solutions of Eq. (4) satisfy 

Im;I < 1. 
A more convenient form of these equations is obtained in terms of the 

function FD: (-- 1, 1)--> R defined as follows: 

FD(X  ) = (1 / f l )~3 'D- ' (X)  -- 4X (5) 

As a consequence of Proposition 2.1, F o is a well-defined, odd C = function 
and 

Fz~' (x) > 0 for x > 0, lim F D (x) = + ~ ,  
x ~ l  

F~(0) = ( l / f l )  - 4 

(6) 

The extremum condition--Eq. (4)--becomes 

(_.4 ( n ) m ) i =  F o (mi)  - -  Hi, V i  = 1 . . . . .  n 

where At.") = 1 for [i - j [  = 1, and 0 otherwise. 

(7) 
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Proposit ion 2.2. Let H ~ R + and D be given. Define 

f l ~ ) _  1 - ( 4 + 2 c o s  7r )-~ 
~.max(J(n)) rt + 1 (8) 

Then, denoting I = [0, 1) we have the following: 
(i) For H = 0 and f l  < fl~n), Eq. (7) has in I n the unique solution 

m(n) ( f l ,  O) = 0. Otherwise, Eq. (7) has in In \ (0 )  a unique solution m(n) ( f l ,  
H), which, moreover, is in I n t l L  

(ii) The function rn(n): (0, oo) • R~_ ~ I n defined in (i) is continuous 
and increasing in (fi, H)  [with respect to the partial orders induced by the 
cone R+ +1 for ( f l ,  H )  and by the cone (0) O In tR+,  for m(n)]. 

(iii) The absolute minimum in Eq. (2) is attained at re(n)( r ,  H)  defined 
in (i). If H 4 : 0 ,  it is attained only at m(n) ( f l ,  H ) ,  while if H = 0 ,  it is 
attained only at +_ m(n)(fl, H). 

Proo f .  (i) We start by remarking that every nonzero solution in I n of 
Eq. (7) for H ~ R+ is, in fact, in I n t l L  Indeed, if m i = 0 for some i, then, 
as FD(O ) = 0, Eq. (7) implies mi_ 1 + rni+ 1 + H i -- O, so rni_ 1 = rni+ 1 = H i 
= 0, etc. 

We shall construct solutions in In t I  n of the system (7), by reducing it 
to a single equation, via successive elimination of the unknowns. The 
following elementary remarks will prove useful. 

I .emma 2.3. Let C be the convex cone consisting of all continuous 
functions f:  I--~ R which are C ~ and strictly convex on In t I  and have 
f(0) < 0, limx.~lf(x ) = oo. Every f E C is either nonnegative and strictly 
increasing, or has a strictly positive root, which is unique and beyond 
which f is positive and strictly increasing; in both cases, denote f - i :  
I ~ R + the restriction to I of the inverse of the positive part of f.  Then f -  I 

is C a strictly increasing and strictly concave on Int l .  Moreover, for 

f , g ~ G  

f <  g implies - f - ~ <  - g - 1  (9) 

x , y  E I,  x > f ( y )  implies f - ' ( x )  > y  (10) 

irrespective of the sign of f ( y ) .  
We shall adhere in the following to the notations established in 

Lemma 2.3. 
Let us define f ~ C, i = 1,2 . . . . .  by 

f l (x)  = F D ( x  ) -- H l, f ( x )  = F D ( x  ) - H i -- f - l l ( x ) ,  i 7> 2 (1l) 

Let us note that, in view of Eq. (9), and of the explicit dependence on 
( f l ,  H )  exhibited in Eqs. ( l l )  and (5), f ( x )  is a decreasing function of 
(fl, H)  for every x ~ I. 
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In terms of these functions the system (7) can be written on I n t l "  as 
mi+ ~ =f-(mi), i = 1 . . . . .  n - 1, the nth equation being f . (m.)  = 0. Thus, if 
m ~ In t I "  is a solution of Eq. (7), m. is the unique positive root of f . .  
Conversely, if f .  has a root  m . > 0 ,  then m._ i= f2 -_ l i (m ,  i+1), i 
= 1 , . . . ,  n - 1, are all strictly positive and m = ( m ~ , . . . ,  m~) satisfies Eq. 
(7). 

Thus Eq. (7) has at most one solution in In t I  ", and it has one if and 
only if f .  has a strictly positive root. This in turn is ensured either by 
f~(0) < 0 (which settles the existence for H=/= 0), or by limx_~of'(x ) = a, 
< 0. So, suppose f~(0)= 0. Then, from the definition (11), H = 0 and 
f - l ( 0 )  = 0 for i = 1 . . . . .  n - 1. In particular, f (0 )  = 0, and a i = F~(O) - 
1/a~_ 1 can be calculated inductively. Remembering the relation of fl~(") 
with the greatest eigenvalue of J(") ,  Eq. (8), the result is a, = det(1/f l  - 
J (" ) ) /de t (1 / f i  - j ( , - 1 ) )  for fl < fl(,-1). This is negative for fi >/3~! ") and 
nonnegative for /~ < /~("). As the f~ are decreasing in /~, this settles the 
existence for H = 0 and all fl >/~("). We are thus left with the case H = 0 
and/~ < fi~("), where no solution in I"',{0} exists, because a,/> 0; in this 
case, however, the construction above (or direct inspection) gives m = 0 as 
a solution. This completes the proof of (i). 

(ii) The monotonicity of m(n)(B, H)  follows easily from the construc- 
tion above and from the monotonicity o f f  -1. As l imn~om(")(f l ,  H ) E I" 
satisfies Eq. (7), continuity follows from uniqueness. 

(iii) Let us define G D: ( -  1, 1) • R + -~  R by 

G n (x, y )  = �89 o- X(x) - ~ o ( ~  5- ' (x))  - �89 flxy (12) 

GD(x, y)  > Go(Ix[, y )  and GD(x, y)  is strictly decreasing in x on I at 
fixed y. Indeed, because oy~ is strictly concave and ~-~ (0 )=  0, we have 
% (x)/x > % (x), so 

a6D (x, y)= , [ x ] B 
Ox % - ' i x )  %(%_,(x))  - y 

1 6~;-- l(x) [ 6~" [6T' -- %(6~;-- l(x)) ] 
<<'2 ~ , , [~ , -  

< 0  

At a stationary point m the function to be minimized in Eq. (2) equals 
[by Eq. (4)] (1/n)2,"= ~Gv(mi, Hi), so we have only to compare the values of 
the latter at stationary points. 

Thus, the point (iii) will be completely proved if we can show that for 
every stationary point m different from those indicated 

Imil < m / ( ' ~  V i  = 1 . . . . .  n (13)  
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To this aim, take moduli in Eq. (7): 

(A(")lml)i+ H i/> [(A(mm)i+ Nil--IFD(mi)[ = FD(Imil), Vi = 1 . . . . .  n 

(14) 

and remark that we can confine the analysis to the case in which at least 
one strict inequality appears in (14). Indeed, otherwise either Im[ = m(")(fl, 
H),  or m = 0 and m(n)(fl, H)  vaO [by the proof of (i)]. But [m[ = m(~)(fl, 
H )  is absurd if rn v a +_ rn(")(fl, H)  since a change of sign between consecu- 
tive m i implies at least one strict inequality in (14); if [rn[ = 0 and rn(~)(fl, 
H )  v a 0, (13) is trivially satisfied. 

Repeating the elimination procedure used in the proof of (i), made 
possible by Eq. (10), we find that Eq. (14) implies 

Im/+ll>~f([mi[), i =  1 . . . . .  n -  1 and 0>f~([m,[ )  (15) 

since, again by Eq. (10), a strict inequality for some i 0 propagates to all 
i >  i 0. Equation (15) implies in turn [rn,,] < m(~")(fl, H), which propagates 
backwards to all i, by repeated application of Eqs. (10) and (15). [] 

Remark 2.4. Equation (13) implies, moreover, for H = 0, fl < tic("), 
the uniqueness in R ~ of the trivial solution of Eq. (7). 

The minimum point m(")(fl, H)  defined in Proposition 2.2 is in fact 
the vector of the layer magnetizations in the Kac-type model [cf. Ref. 3, 
where it is shown to be --(1/fi)gradH~P(D ~), and a standard argument (9) 
based on the convexity of log Tr exp(-fl%(D~,)y,U ) as a function of H]. The 
susceptibility matrix will be defined consequently by 

)6}'0( fl, H )  -- Ore}")( fl, H) /OHj  (16) 

This definition makes sense for (fl, H)  E (0, oo) • In tR ~ where + ,  

m(')(fl ,  H)  is C ) by the implicit function theorem, and, as seen by taking 
the H derivatives of Eq. (7), equals there the inverse of the matrix 
X('>(B,H): 

H )  = - (17)  

We shall be interested in the zero-field susceptibility X(')(fl,  0) 
-~limH,,OX(")(fl, H).  By Proposition 2.2(ii) and F~ ~ O, X(")( f l ,  H)  
/> X( ' ) ( f l ,0) - - l imH. ,oX(")( f l ,  H), so the limH.,0X (") will exist whenever 
X( ' ) ( f l ,0 )  is invertible, and will then be equal to X(")- l ( f l ,  O). We shall 
show in fact that X (')( fi, 0) is strictly positive definite for f lv a fl~("). Indeed, 
if m(")(fl, 0) --0, we have [remembering Eqs. (8) and (6)] 

X(,,)( fl, O) = F ; ( O ) _  A(.) = 1 j ( . )  ) 1 1 # # #~.>--an(B) 

(# < (18) 
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while if m('~ E In t I  ", 

Fo(m}")) m}~_) l + m(i+)1 
F~9(m} ")) > m} ") m} ") (too ~"> m t").+ , = 0 )  

as F D is strictly convex, and, because the matrix 

( 8, m(i2)l+m(i+'m}n) A(ij ") ) 

is nonnegative (its (~ :::i) minor equals m}~.]/rn} ~)) we have the lower 
bound 

FD(m} ") ) 
,q 

>min n)) ] mi(n ) = a.( /3 ) > O J 
(/3 

09) 
Note that a~(fl) "~ 0 for f l~ f i~  (n). 

Remark 2.5. The relation X (n/ = X (~)-~ allows easy proofs for the 
positivity and monotonicity properties of X (n) as a quadratic form and of 
its matrix elements, in particular, for/3 ~ fl~(n), 

o < x<">(/3,H) < x<~ a.(/3)- '  (20) 

0 < X/}~)(/3, H )  < X/}~)(/3, 0) Vi, j = l  . . . . .  n (21) 

The strict inequality in (21) follows, for instance, from X (n) = f ~ e x p ( -  
tX (n)) dt, valid because X (~) is strictly positive definite, and remarking that 
[exp(-tX(~))]y > 0, Vi, j, by looking at its series expansion. (Otherwise, 
X (n) is a symmetric M matrix. (~~ 

Let us consider the equation 

2x = F D (x) (22) 

It has only the trivial solution m s ( / 3 ) = 0  if /3 <{-=-/3c and a unique, 
strictly positive solution ms(~3 ) if/3 > tic. As will be shown in Section 3, 
rnB(/3 ) is the bulk spontaneous magnetization, and, consequently, tic-1 is 
the bulk critical temperature. Clearly, fi~n)~/3c when n + m. 

Because F D is convex, we have F~(0) < 2 < Fig(ms(~3)) for /3 >/3c 
and, moreover, F~(0) 7 2, F~9(mn(/3))"-~ 2 when/3 "-~/3c. 

From now on, we shall confine ourselves to the limit H = 0 and derive 
some properties of m(")(/3, 0) and X(n)(/3, 0). We shall simplify the notation 
by omitting the arguments: m(")(fi, O), mB(/3),X('O(/3,0) will be written 
simply as m ~), ms ,x  ~"), respectively. We shall define the "distance from 
the boundary" by 

di (") = min(i, n + 1 - i) (23) 
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Proposition 2.6. Let/3 >/3c and n o be the smallest integer for which 
/3 >/3~ ("~ Then, for all n > no: 

(i) m/(~)<mB, Vi = 1 . . . . .  n. 
(ii) m (n) = "-(") m/(n) --~![,,(~) + m(~)), Vi = 1, n. ~ l ~ n +  1 - - i ,  I -  2 \ H t i - -  1 " " �9 , 

As a consequence,  m,. ("} is a strictly increasing function of di("). 
(iii) m/("+0 > m,. ("), Vi = 1 . . . .  , n. 
(iv) There  exist constants C, c > 0, depending only on /3  ( independent  

on n), such that 

O < ( m B - - m i ( " ) ) / m B  < C exp( - cd,.(") ), V i = t  . . . . .  n 

Proof. (i) Let i 0 be such that mi(o n) is maximum among ms (n). Then, 

F [m ( " ) ~ = m  (~) + m  (~) <2m(o~) D~ i o ] io-1 io+1 

implying rn~(o") < ms. Equality is impossible because it would propagate  to 
the first equation, giving FD(mB)= m s, which is absurd, as m s > 0 for 

/3 >/~c. 
(ii) The symmetry  of m, (n) follows from that of the system for H = 0. 

The property m} ") << (m}2)l + m}+);)/2 for one i gives FD(mi ('0) > 2m} n), i.e., 
m(i ") > m B, contradicting (i). 

(iii) As already remarked,  for H = 0, the sequence f ( x )  defined in Eq. 
(11) is strictly decreasing, Vx ~ I n t I .  Thus m (n+l) ,+1 > m ~  ("), or by (ii), 
m[ ,+  l ) >  m~,). However,  f(m(~ ")) > O, Vi  = 1 . . . . .  n, and thus all f are 
strictly increasing on [m} "), 1), implying m2 ("+ ') = f l(m~ n+')) > f l (m}  ")) 
= m ( 2  n ) ,  e tc .  

(iv) Let  

, , ,  = s 2 x  
x~[ml(~ mB] k 

Then we have ~o < oe, because m} "~ > 0 and F;) (mB)> 2. Now, as mi (") 
E [m~n~ for n > n o and all i, and rn~ (~) increases with i for i < n /2 ,  we 
have 

m s - mi (") <~ w(2mi ( n ) -  FD(mi( 'O))= oa(2m/(")- rn/(_~] -- m~+]) 

< w(mi ( " ) -  mi(n) 0 = o~[ (m  s - mi(2)O- (m  B - m(n))] 

f rom which 
m mB--  m(in) < 1 + 6 0 (  B--  m/(-n)l) 

which leads by iteration to the desired inequality with c = log(l + 1/co), 
C = 1. For  odd n and i = (n + 1)/2, m B - m/(n) < 2a~(m,. (") - m}2)l) and (iv) 
extends to this case if one takes C = 1 + 1/(2oa + 1). �9 

Proposit ion 2.6(iv) shows that, for 13 far from /3c and n sufficiently 
large, mi (") differs significantly f rom m s only near  the boundary.  We shall 
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next show that the effect of replacing m} ") by m~ in the expression for X (') 
is also significant only near the boundary. To this aim, let 

)~(,) = F b ( m B )  _ A(,), )~(~) = • ( n ) - I  (24) 

In view of Proposition 2.6(i), 5 (") > X (") for fl > tic and AT(") = X (") for 
fl < tic, so )~(") is positive definite for all/3. We have 

ffGSn) __ Z z l i - j [  __ Z ( z i + j  _jr. z2(n+ l)-- i - j  --  z2(n+ l ) - i+ j  
1 _2 z 2 (1  - -  Z 2 ) ( 1  - -  Z 2 ( n + l ) )  

_ . . ( . +  < . I , - j t  - x J' (25) 
1 - z 2 

where z is the solution < 1 of the equation z + 1 / z  --- F;~(mB). [X ~ is the 
resolvent of the discrete Laplace operator on 12(Z) at F~(rns) - 2; expres- 
sion (25) for )~(") can be easily obtained in terms of X B by applying, for 
instance, the method of images, as usual for -d2 /dx2 . ]  

Proposition 2.7. Let fi > /3  C and n o be chosen as in Proposition 2.6. 
There exist constants C 1 , c 1 > 0 such that, for all n > n o, 

O<x.iSn)-xiJn)<-.. C lexp[-Cl (d i (n)dr4(n) ) ]  , l < i ,  j<<.n 

ProoL Let V (") = y((") - X ("). Now, V (") is diagonal and, by Prop- 
osition 2.6(iv), 

O< Vi}")=F;(rnB)-F;(rni(")l<<. C'exp(-cdi (")) (C'=C sup F;)  
(O,m~) 

Thus, using Eq. (19) and 

FD(x) t a n ( f l ) >  inf [F~(x)  , =--a '~( f l )>a'o( /3)=---a>O 
L x 

[by Proposition 2.6(ii), (iii)], we have, because )~(") >/ a + V (~), 

0 < v ( n )  l / 2 x ( n ) v ( n ) l / 2  ~<(1 Jr a V ( n ) - l ) - l < ~  C ' / ( a  + C' )  

Then II(1 - v ( n ) l / 2 ~ ( ( n ) v ( n ) l / 2 ) - l [ [  < (a + C ' ) / a ,  so 

x ( n )  __ 2 (n )  = ~( (n )v (n  ) 1/2(1 -- V (m 1 / 2 2 ( n ) v ( n ) l / 2  ) - 1 v(n)1/21~(n)  

But, using the bound in Eq. (25), we have 

2 9~")V~)1/2 < C" exp ( - c1 4  (~)) i,aj " j j  
j = l  

with c 1 = �89 rain[c, log(1/z)], from which the assertion follows. 
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3. THE SEMI-INFINITE LIMIT 

In this section we shall be concerned with the n ~ m limit of the local 
and global quantities characterizing the n-layer system. Specifically, we 
shall be interested in limits like lim,__,~m} n) at fixed i and l imn_~( l /n  ) 
~2~= lrn} n), which should be taken as the local and global magnetization of 
the semi-infinite system, respectively. Physically, it is to be expected that 
local quantities will approach the corresponding global quantities exponen- 
tially rapidly with distance from the boundary, as long as fl is kept away 
from tic" 

Proposition 3.1. Let H = 0. Then we have the following: 
(i) The sequencer E G defined by Eq. (11) converges monotonically to 

a function f E C, which is the (unique) solution of the functional equation 

f ( x )  + f - 1 ( x )  = F D (x) ,  x E I (26) 

(ii) l i m , ~ m }  ") -- m i exists; m i = 0 for fl < tic, while for fl > tic 

m i = ( f - l ) ~  i = 1, 2 . . . .  (27) 

where ( f - t ) o i  means f - l � 9  Of-1  (i times). For fi > tic, mi as a 
function of i is strictly increasing and concave and there exist constants 
C, c > 0 such that 

0 < (m  B - m i ) / m  B < Ce-Ci, Vi = 1, 2 . . . .  (28) 

(iii) l im ,__ ,~ l /n~ i=lm}  n) = m B 

Proof.  At H = 0, f ( x )  is decreasing with i and bounded below by 
F D (x) - 1, so the limit f ( x )  exists, is convex, f(0) < 0 [because f ,  (0) < 0 for 
all n such that fl(,-1) < ill, and limx__,tf(x ) = oz. Equation (26) follows by 
taking the limit in the recurrence relation (11). Equation (26) implies in turn 
that f is strictly convex (because F D itself is) and C ~ on Int I. [As this latter 
fact will not be used in the following, we refrain from producing a formal 
proof and only remark that it follows, along with the uniqueness of the 
solution of Eq. (26), from general arguments, as indicated in Section 5.] So, 
f E C. Equation (27) follows from this, using the construction of m} ") in the 
proof of Proposition 2.2(i). The properties of m i are consequences of 
Proposition 2.6. �9 

R e m a r k  3.2. (i) Because FD(0)= 0, we have f ( 0 ) = - m  1 < 0  for 
fl > tic, which implies, via the convexity of f ,  that f ' (m 0 > 1, i.e., 

f - ' ( y )  - f - ' ( x )  
0 <  < f - v ( 0 ) < l ,  O < x < y < l ,  f l > f l c  (29) 

y - - x  

Moreover, the equation f ( x )  = x has the unique solution x = roB: 

f ( m B )  = f - ' ( m B )  = m B (30) 
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This allows us to calculate all derivatives of f ( x )  and f - l ( x )  at x = m B in 
terms of the derivatives of F D ; e.g., f -  V(m~) = 1/f'(mB) = Z, where z < 1 
satisfies the equation z + 1 / z  = F~(mB) [see also Eq. (25)]. 

(ii) The bound (28) follows also directly from Eq. (27) and f -~(x)  
) m I +[ (m B -m~) /mB]x  on [ml,mB], providing C =  1, c = - l o g ( 1 -  
m f f  mB). Similarly, 

f - ' ( x )  < rn B - [ 1 / f ' ( m B ) ] ( m  B -- x )  =-- m B -- z ( m  B -- x )  

provides the lower bound: 

(m  B - m i ) / m  B >1 e -c'i [ c ' =  -log(1 - z)rnBJ (28') 

(iii) Remembering that the free energy per spin is given by 

1 GD(m:"',0) 
/~r ( / ~ ;  ( 0 ) )  = ~ i = 1  

we have, as a consequence of Proposition 3.1(ii), that the following limits 
exist: 

f l+~(f l )  = lim fl+(")(fl; ( 0 } ) =  GD(ms ,0 )  (31) n --> oo 

f l+s ( f l )  = lil-n fln[+(D")(/~; {0})-- ~ ( f l ) ]  

= ~ [ GD(mi,O ) -- GD(mB,O)] (31') 
i = l  

Equation (31') defines the "surface free-energy." ~s ( f i )  vanishes for 
B<Bc. 

We shall consider next the susceptibility for the semi-infinite system. 
Along with X~ ~), which is the response of the magnetization of the layer i to 
a magnetic field applied at layer j ,  we shall be interested in ~]]=lX/~ "), 
representing the response of m (') to a uniform magnetic field, and also in 
( 1 / n ) ~ . =  lX/~ ."), representing the response of the mean magnetization to a 
uniform magnetic field. 

We shall denote as usual by l 2 the Hilbert space of complex sequences 
= {~i, i =  1 , 2 , . . .  } with scalar product ((, vl)= ~ / ~  l~i~i. The orthogonal 

projection onto the first n components will be denoted P,. The operators 
X (") E)(1 - P,) and X (") ~ (1 - P,) on l 2 will be denoted for simplicity 
again by X (") and X ("), respectively. We have chosen this way of transport- 
ing them from C" to l 2 in order to preserve the relation X (") = X (")-'~ 
Finally, let X and )~ be the bounded self-adjoint operators o n  l 2 defined by 
the matrices X,y = FA(mi)8~j - ~i, j+ 1 - ~i+ I,j and Xsj = FA(mB)Sij - 8i , j+ 1 - 
8i+lj, i , j  = 1 , 2 , . . . ,  respectively. 

Proposition 3.3. For every B ~ Bc there exists a > 0 such that 
X /> a. L e t x = X - 1 .  Then 

(i) lim,-,~X~ :) = Xy, Vi, j = 1 , 2 , . . .  
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(ii) " ~ (") - llm,_~:c~j= 1X/) - ~ j=  ,X~y, Vi = 1,2, . . .  
(iii) " " ( ' ) -  lim ~ ~ B llm,--,~l/n~i,j=lX~) - i - - ~ 2 a j = | X i j  = 2aj=-aoXOj 

with X B defined in Eq. (25). 

Proos X (') --+ X strongly. Indeed 

II(X (") - X)~] l  < ] l (X (') - x ) e k ~ [ I  + II X(")  - X[I I1(1 - G)~II 

and the second term can be made arbitrarily small, as the X (') are equally 
bounded, while for fixed k the first term goes to zero by Proposition 3.1(ii). 

On the other hand, X (') >1 a( f i )  > 0 for fl ~ tic, with a( f l )  indepen- 
dent of n [by Eqs. (18) and (19) and the proof of Proposition 2.7]. Thus 
X >/ a, and X ( ' ) - l -  X - l =  X ( ' ) - ] ( X -  X ( ' ) ) X  - l  converges strongly to 
zero. This proves, in particular, (i). 

The convergence in (ii) follows from (i) and from the uniform bound: 
0 < X~ ") < X~ + C~ e-C'(i+j), resulting from Eq. (25) and Proposition 2.7 for 
fl > tic or X (') = )~(') for fl < tic and n sufficiently large. 

To prove (iii), let us first remark that, again by Proposition 2.7, for all 

/3~:K 
a n 

n---)~ 1l i , j=l  n i, -- 1 

From the explicit form of )~("), Eq. (25), we see that 

lim X~.(/")= ~j --= ) ~ - ' ) -  __z z 2 ( z l i - j l_  zi+j) (32) 
n~or 's 1 

and that I~.~. ") - LTI < C /exp [ -  c](di (') + ds('))], which implies 

lim 1 ")= lim 1 " = lim ~ j =  X 
n--)or n i , j = l  n---)er 1l t ' , '= 1 i-~oo "= 1 j = - o r  

by explicit calculation. This finishes the proof for fl < tic. For/3 > tic, 

lim ~ Xq= l i m  X/j 
i--)oo j . =  1 i--)r j =  1 

because, by Proposition 2.7, 

0 < Xay -- ~y K CI e - c ' ( i + j )  l 

4. THE CRITICAL BEHAVIOR OF THE SEMI-INFINITE SYSTEM 

This section is devoted to a detailed analysis of the critical behavior of 
the (layer and bulk) magnetizations and susceptibilities defined in the 
preceding section. 

The asymptotic behavior of m B can be calculated from Eq. (22) using 
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the definitions (3) and (5): 

l i m ( f l - f l c )  -1/2 I -1/2 (1 2 1/2 #~B~ ~ ms=  lim C ~  FD(0) = + ) (33) 

The first result, showing the difference in critical behavior of the layer 
and the bulk magnetizations, is that the ratio 

tZk = mk /  mB (34) 

converges to zero like (fl  - tic) 1/2 as/3 --~ tic. 
We shall take as a small parameter mB, instead of (fl  - flc)/flc, and 

henceforth denote m B by t, for notational convenience. With this conven- 
tion, we have, more precisely, the following proposition. 

P r o p o s i t i o n  4.1.  For every D = 1,2 . . . .  (and D = oo): 

lim t-ltzk= k31/2(1 + 2 / D )  -j/2, k = 1,2 . . . .  
t"~0 

Proof. It will be convenient to make a scale transformation of the 
functions F D and f in Proposition 3.1(i) (omitting at the same time the D 
dependence). So, let F t, ft be defined on [0, 1] by 

Ft(x) = t- 'FD(tX),  f t (x)  = t - l f ( t x )  (35) 

Clearly, denoting as before by f t - l  the inverse of the positive part of ft, 
f t-  1(x) = t -  ~ -  l(tx), f satisfies the functional equation 

f ( x ) + f t - ' ( x ) = F t ( x  ), x E [ 0 , 1 ]  (36) 

and #k -- ( f -1)~ �9 We shall need the following lemma. 

L e m m a 4 . 2 .  For e v e r y 0 < t < l  a n d 0 < x < y <  1 

f , - ' ( y )  - f , - l ( x )  
zt =--(ft-' )'(1) < < ( f - i  )'(0) < 1 (37) y - x  

In particular, t-->f -1 is a family of (nonlinear) contractions of [0, 1] into 
itself. Moreover, uniformly for x E [0, 1] 

-31/2 1+ 1 - x  2)~A(x)  (38) 
t'-~O t 

Now, the proposition follows for k = 1, by applying Eq. (38) at x = 0, 
while for k > 1, by induction, using 

t-l( ft-1)Ok( O)= ft-10 (f-1)o(k-l)(o)_f-1(O ) (f-l)O(k-l)(o)q ft-1(O) 
(f_,)o(k-,)(0) t t 

and Eq. (37), where z t ---> 1 for t---> 0. 



Critical Behavior of Kac-Type Models tor Semi-Infinite Systems 543 

Proof of Lemma 4.2. Equation (37) is the transcription of Eq. (29) 
in scaled form. To prove Eq. (38), we need the following information on the 
t---~ 0 asymptotics of F ,  which can be obtained by calculation: uniformly 
for x E [0, 1] 

lim - tic-' 1 + x(1 - x 2) (39) 
t-.~0 t 2 

Let us denote ht(x ) = t - l [ f - l ( x ) -  x], g t ( x ) =  t - t [ x  - f,(x)]. Both h, 
and gt are positive and concave, and, by Eq. (36) and by f, o f  l(x) = x, 
satisfy the relations 

gt(x) - ht(x ) = t - l [ 2 x  - Ft(x)]  > 0 (40) 
h,(x)  = &(x + th,(x)) (41) 

As & is concave, we have, substituting Eq. (41) into Eq. (40), 

Also, 

- h , ( x ) g ; ( x  + & ( x ) )  > 
2x - Ft(x  ) 

t 2 
> - ht(x ) g;(x)  (42) 

h;(x) = [1 + th;(x)] g;(x + th,(x)) 

<[1 + th;(1)] g~(x + th,(x)) 

= z,g;(x + th,(x))(< 0) 

so the first inequality in Eq. (42) gives further 

Analogously, by h,(x) > gt(x) + tgj(1)h,(x), we have g t (x ) /h , ( x )  < 1/z , ,  so 
the second inequality in Eq. (42) gives 

l { ( x )  < 1 fx' 2x ' -  F,(x') Z " ) s  dx' 

As z t -~ 1 and in view of Eq. (39), these two inequalities imply the uniform 
convergences 

,-,olimh~(x) = t-~01im g 2 ( x ) =  2fl~-I (1 + 2 )-1s 1 _ ~2)d ( 

_-,(, + 

which finishes the proof. �9 
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Corollary 4.3, For 0 < t < 1, let 

v/= 12(1 + 2/D )- it2 

and define qt: R + ~ R + by 

qt(x) =/~k for (k - 1)7/1/2 ~< x < k~ '/2, 

Then, uniformly on compacts of [0, oo) 

limqt(x) = qo(X) = tanh(x/2)  
t"~0 

(43) 

k -- l, 2 . . . .  (44) 

(45) 

Proof. By a nonlinear version of the Trotter-Chernoff formula (Ref. 
11, Theorem 3.6), (fx~)~ converges uniformly on compact x intervals 
to the (continuous) semigroup generated by A. As a consequence, whenever 
~k(X) converges uniformly to x, 

--1 o k  

uniformly on compact, where q(x) is the solution of 

q'(x) = A (q(x)), q(0) = 0 (46) 

With A given by Eq. (38), this can be integrated, giving 

q(x)= tanh[xx/3(1 + 2/D ) -'/2] 

For every fixed x, and for every t, let k -  1 be the integer part of 
,1-1/2x and define ~t(x)=kt. Then i t(x)  converges uniformly to 

x/2~/3-(1 + 2/D) 1/2 when t--~0. Since 

--1 o k  

q,(x) = T (0) 

the lemma follows from what has been said above. [] 

Remark 4.4. The physical content of Corollary 4.3 is that it provides 
the limiting form (at the critical point) of the magnetization profile when 
the magnetization is normalized to unity in the bulk and distances are 
measured in units 

TI-I/2__ 1 ( fl-- tic) -./2 

times the lattice constant. This unit is of the order of the bulk correlation 
length. It is interesting to translate this result (going back to the original 
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notations) as 

in which the crossover from the boundary layer critical behavior (as 
described in Proposition 4.1) to the bulk critical behavior is clearly exhib- 
ited. Equation (47) is in fact the scaling ansatz usually made when studying 
the critical behavior of systems with surfaces. (See, for instance Ref. 12.) 

We shall consider next the critical behavior of the susceptibility. We 
have to consider separately the asymptotics from the paramagnetic (fl 
< tic) and ferromagnetic (fi > tic) regions. 

In the paramagnetic region, the susceptibility matrix is explicitly 
known: X -- )~ -- X-  1 [cf. Eq. (32)] and the following results are immediate 

consequences of limBers(It - f l / f l c ) -1 /2(  1 - -  Z )  = ~ 6 - .  

Proposition 4.5 
(i) lim#~BcX, j = min(i, j )  

(ii) l i m B ~ c ( l c -  fl/fic)l/2Z~~ ,X,j = i / ( 6  

(iii) lim B ~.~c(lc - f l / f i c ) l i m i ~ j ~ =  1X~j = 1/6 

In the ferromagnetic region, we no longer have a simple expression for 
X and we shall use the perturbation formula 

X = 2 + x V ' / 2 (  1 - V 1 / 2 2 V ' / 2 ) - 1 V ' / ~ X  (48) 

where V = ) ~ -  X is diagonal and positive (see the proof of Proposition 
2.7). As the critical behavior of )~ for fl "-~ tic is again immediately available 
from 

lim ( fl - tic ) -1/2 
~'~Zc \ tic (1 - z) = 2~/-J- 

we are left with evaluating the contribution of the second term in Eq. (48). 
To this end, it will be convenient to transport this term as an operator in 
L2(R+), taking advantage of Corollary 4.3, which shows that the scaled 
magnetization profile (and thus also V) interpolates a continuous function 
in the limit. More exactly, let 

W t ( x  ) = , - l V k k  = , - I [ F / ( 1 )  -- F/(/~k) ] 
(49) 

for (k - I ) T / 1 / 2  ~ X ~ k~'l I/2, k = 1,2 . . . .  



546 Angelescu, Bundaru, Costache, and Nenciu 

Since, together with Eq. (39), we also have uniformly on [0, 1] 

lim 
t"~0 

2 -  F,'(x) f l -~(1  + 2 )  -~ t2 ~ (1 - 3x z) 

F/'(x)  ( 2 )  ' 
l i m - - = 6 f i ~ - I  1 + ~  x 
t--~0 t 2 

(39') 

The adjoint U* : L2( R + ) ~ l 2 acts as 

(Vt$~)k ~ 7--l/4f(;:lii~l/2l~(x) dx (52') 

Clearly, U* U t = 1 on l 2 and s - limt.~0Ut U * = l on L2(R + ). 
Now, Eqs. (51) and (50) imply, on the one hand, that 7-1UtVU * 

converges strongly when t "-~ 0 to the multiplication by Wo(x ) on L2(R + ), 
1/4 g l/2~ and, on the other hand, that the image of the vector ( 7 -  , kk Jk= 1,2 . . . .  

converges in norm to WoV2(.) ~ L2(R + ). Further  

7[ u,2u,*~](x) = fo~K,(x, y)~(y) ay--(K,~)(x) (53) 

where the kernel K, is given by 

K,(x,  y )  = 7 ' /2s  for ( i -  1 ) 7 1 / 2  ~< x < i71/2 
(54) 

( j  - 1)71/2 < y <j71/2 i , j  = 1,2 . . . .  

It can be seen from its explicit form, Eq. (32), that 

l imK, (x , y )  = 1 [ e - l ~ - y l -  e -(~*y) ] ~ Xo(x , y  ) (55) 
t "--*~0 " 

and K t converges in Hi lber t -Schmidt  norm to the operator  K o defined by 
this kernel. As expected, K 0 is the resolvent at ), = - 1  of - d Z / d x 2  on 
[0, ~ )  with Dirichlet boundary  condition. 

Collecting this information,  we have that 
l.~f 1/2 IC lff/- 1/2 s - lira/.1,[ 1 - V1/2~V 1/2 ] U* = 1 - ,, o - o , ,  o 

t'---~O 

k = l , 2  . . . .  

(52) 

we can conclude from Eq. (28) [with C = 1, c -- - l og (1  - / x l ) ,  cf. Remark  
3.2(ii)] and Proposit ion 4.1, that, with Co, c o > 0 independent  of t 

W,(x) <. Coe -c~ (50) 
and, moreover,  uniformly on [0, oe) 

lim Wt(x ) = Wo(x) =- 3 cosh2(x /2 )  (5 l) 
t ---~ 0 

Let us define the isometry Ut: 12---> L2(R + ) by 

(v,~)(x) = 7 - ' / %  for ( k  - 1)7 '/2 < x < k7 '/2, 
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The latter operator is strictly positive definite, because the differential 
operator - d 2 / d x  2 -  Wo(x ) on [0, oo) with Dirichlet boundary condition 
has the lowest eigenvalue equal to - J  ( >  -1) .  (Actually, its spectrum is 
exactly known; see, e.g., Ref. 13, Problem 1,14, where only the eigenvalue 
corresponding to antisymmetric wave functions is to be considered.) Thus, 
also 

_ TATII/2/Z" IT/I/2"1 - 1 s - l i m U ~ [ 1 -  V V 2 2 V ' / 2 ] - ' U * = - [ I  " o  , , o " o  3 (56) 
t "--,~ 0 

We are now prepared to state the following proposition. 

Proposition4.6. (i) lim#.~t~X~j=min(i,j) 

~ii) l ! 2 m ~ . ~ a ~ ( 3 / B  ~ - 1 ) ~ / 2 ~ = ~ X , j  = i~  ~ i 2  [I + ( ~ , ( 1  - 
Wd / KoWd / )-~)Lz] where tp(x) = (1 - e-~)W~/2(x) ,  qJ(x)= e-~Wo~/2(x). 

(iii) l ime.~( /3  -/3~)//3~lim~_.~]~=~x,~ = 1/12 

Proof. (i) Let ~(;) - ~" v~/2 As z x / ~  --> e -~ when t "--~0, and, for rt - -  A.ik �9 k k  " 

sufficiently small and (k - 1)~/I/2 < x < k~l ~/2, 

z ( z - ' -  ~') 

1 - -  Z 2 

z k ( ~  - l l ' f "  k k ] % l / 2  

we have 

(L2) lim ~ - l /4Ut~(i)  ~-. il~ 
t ".~ O 

Hence 

] h  

= r/t/2(r/-'/4U,~ (i), [ 1 - W)/2Kt Wt '/2 ] -'~0 -'/4U,~ U)] 
I L 2 

(57) 

= o ( , 7 ' / : )  

(ii) Let 

Then we have 

i = 1  

z(1 - z ~) v~/z 
�9 k k  

(1 - z )  2 

(Lz) lim 713/4Ut~ = ~ (58) 
t"-~ O 
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and thus 

 ,j2 _ = [ 1  - 
j=l 

. - ~  (,~]-l/4ut~(i) [ 1 - wtl/2gtwtl/2]-l,3/4Ut~)L2 

from which (ii) follows using Eqs. (56)-(58). 
Property (iii) follows from ( 1 2 ) l i m j _ ~ ( J ) =  0 for every ~ > 0, which 

allows us to replace X by ;~. �9 

5. CONCLUDING REMARKS 

5.1. As shown in Section 2, the model layer magnetizations are the 
~{ ~ 0 limits of the expectations of S~i. One would expect naturally that 
other combinations of correlation functions also converge in this limit and 
their limits are directly related to the derivatives of the model free energy. 
For instance, Xsj is expected to be the ~--~0 limit of 

D N 
lim ( N D ) -  I ~ ~ ~ /~ T 

N---)~ a , ~ =  1 p~,t,'= 1 (Sl~iat'J~ 

In fact this is true at least in the cases D = 1 and D = ~ ,  due to the 
concavity of the magnetization which is known to hold for the Ising 
model (14) and the spherical model. (15) However, to the best of our knowl- 
edge, proving the convergence of all the correlations of the D-vector model 
as "~ ~ 0 (which is a necessary step in defining completely the state of the 
Kac model) is still an open problem. 

5.2. We shall outline below an alternative, more geometric, picture of 
the results in Sections 2 and 3. 

Let ~: R • ( -  1, 1) ~ ( -  1, 1) • R be defined by 
O 

(x,  y ) - - - - * ( y ,  F o ( y  ) - x)  (59) 

The point in making this definition is that, for every m i_ 1, mi, mi+l satisfy- 
ing Eq. (7) with H i = 0, i.e., mi+ 1 = FD(mi) - mi_ 1, we have 

dP(mi-I, mi) = (mi, mi+ 1) ( 6 0 )  

Thus qb is a kind of transfer function for the system (7). 
The �9 is a diffeomorphism onto its image. The tangent map at a point 

(x, y) is given by the invertible matrix 

( 0  1 ) (61) 
DCb(x,Y) = - 1 F ~ ( y )  

When F]9(y) > 2, this matrix has eigenvalues z E (0, 1) and z -1 > 1, while 
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I I w" I 
__ 7 . . . . . . .  I 
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[ 

p Fig. 1. Invariant manifolds of qb for/3 ~< tic. 

when F~ (y )  < 2, its eigenvalues are on the unit  circle. Clearly 

TOp = Op-~T, SOp= OpS (62) 

where T(x, y ) =  (y,x)  and S(x, y ) =  ( - x , - y ) .  We shall be interested in 
the orbit  structure of qb. 

Let us consider  first/3 < tic, when FA (y)  > 2 everywhere.  In this case, 
Op has the origin as its unique fixed point,  which is hyperbolic.  

In  a ne ighborhood of the origin, the H a d a m a r d - P e r r o n - H a r t m a n n  
theorem < 16) provides two C oo manifolds  W s and  W", tangent  at  the origin 
to the eigenspaces of D Op<o,0 ) (i.e., to y = zx and y = z - I x ) ,  which are 
stable under  Op and Op-1, respectively. In our  case, these manifolds  define 
locally two C ~ functions, f - 1  and  f,  which satisfy the funct ional  equat ion 
(26) and,  by uniqueness,  can be identified with f - i  and  f used in Section 3. 
The  funct ional  equat ion allows us to construct  f and  f - ~  globally as C o~ 
functions. The  situation is depicted in Fig. 1. Every point  outside the graph 
of f - ~  is thrown away  f rom the domain  of Op after  a finite n u m b e r  of 
appl icat ions of Op. In  part icular,  Op has no periodic points. 

For  /3 > tic, qb has (mB,mB) and ( - m  B, - m B )  as hyperbol ic  fixed 
points  and  the origin as an elliptic fixed point.  The  same kind of analysis 
can be carried out  a round  (___ m B, ___ m~); also making  use of the symmet ry  
under  S in Eq. (62), it will be sufficient to consider (roB, mB). 

In  contras t  to the previous case, the stable manifo ld  W s has a much  
more  compl ica ted  structure; in part icular ,  it m a y  have several connected  
components f l  However ,  the connected  c o m p o n e n t  containing (roB, m•) has 
a simple structure in the half -plane x > 0, given by the graph of a C ~ 

2 This is due to the singular behavior of ~ -  I at the lines x = + 1. Indeed, since for sufficiently 
large ,8, F D can take arbitrarily large negative values, one can easily see that 4?-I(W s f3 (x 
/> 0)) may intersect the line x = - 1 twice, implying that its intersection with the domain of 
4? -1 will not be connected; by again applying 47-1, one can see that W s itself is not 
connected. 
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Fig. 2. Invariant manifolds of �9 for/3 >> Be. 

function f--i :  [0, m ) ~  (0, 1), which, again by uniqueness, can be identified 
with f - 1  used earlier. The situation (for sufficiently large r )  is illustrated in 
Fig. 2. 

We now make the connection with the layer magnetizations for the 
finite slab and the semi-infinite system constructed in Sections 2 and 3. For 
finite n and H = 0 this is done by remarking that the distribution of layer 
magnetizations is given by n consecutive points in the first quadrant of an 
orbit of ~b: {~k(0, y), k = 1, . . . ,  n}, such that qbn(0, y) is on the positive 
0x axis. These conditions determine y -- m} n). Making use of symmetry, it 
can be seen that (0,m} ~)) is a periodic point of q~ with period 2(n + 1). 
When n goes to infinity the points ~bk(0, re}n)), 1 < k <<. n / 2 ,  approach the 
stable manifold W s of q5. In other words, the magnetization profile of the 
semi-infinite system is given by the orbit of (0, f-L(0)), which is contained 
in W s. This is consistent with the fact that the only point of the 0y axis with 
infinite orbit completely contained in the first quadrant is (0, f-1(0)). 

When fi--~/3 C, the two invariant manifolds in Fig. 1 become tangent at 
the origin. When fl--~ tic, the three fixed points in Fig. 2 coalesce into a 
single point, the origin. Thus the study-of the critical behavior requires 
consideration of the limiting case of a degenerate hyperbolic fixed point or 
of coalescing fixed points. 

5.3. The description given in the above remark makes it possible to 
give a simple discussion of other boundary conditions. Leaving a more 
detailed exposition for a future publication, here we consider as an example 
the result for the semi-infinite system with two different kinds of boundary 
perturbations. 

(a) A positive magnetic field H~ on the first layer, i.e., the modification 
of the first equation as rn 2 = F D ( m l ) -  H 1 �9 (This can be alternatively 
viewed, if H 1 < 1, as given magnetization m 0 = H 1 on a supplementary 
layer, numbered zero.) If m~ were known, the other magnetizations could 
be obtained as (mk ,mk+ 0 = o#k(Hl ,ml ) .  This has to be an infinite trajec- 
tory of q~, completely contained in the first quadrant [cf. Proposition 
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2.2(ii)]. The  only chance is for (H i ,m1)  to be on the stable manifold  of 
(m 8, mB). This implies that, for /3  > tic, ms approaches  m B exponential ly as 
i ~ m,  while for /3  < tic, ms approaches  zero exponentially.  

(b) A modif ied coupling constant  within the first layer, i.e., the 
modif ica t ion of the first equat ion as m 2 = FD(m O -  4 A . m  1. Since the 
interaction within the first layer should remain  ferromagnetic ,  we impose 
iX >/ - 1 .  Again, if m~ were known, the other magnet izat ions  could be 
obta ined  as ( m k , m k + ~ ) =  qSk(4Aml,ml). By the same argument ,  the itera- 
tion should start  with the intersection of y = 4Ax with the stable manifold.  

I f / 9  > tic, one has always a positive solution with m s-~ m B exponen-  
tially. For  A < �88 m i ~ m e f rom below; the critical index of mi is the same 

as for A = 0, i.e., m i behaves  as ( f l -  t ic) / f ie ,  where fl"~/~c. For  A >�88 
m~ ~ m B f rom above;  in fact, m 1 does not  approach  zero when fl--~ fie- 

If fl < tic, there are nontrivial  intersections with the stable manifold  if 
and  only if 42~ > f ' (0) .  Because f ' (0 )  decreases as a funct ion of t3 f rom + oe 
to 1 when /3  increases f rom 0 to tic, we conclude the existence, for every 
A >�88 of a new phase transit ion at  /3c,s(A) given by 4 A = f ' ( 0 ) :  for fl 
< flc,s (A) the semi-infinite system has all layer magnet izat ions equal to zero, 
while for flc,s(A)< fl < tic, the layer magnet izat ions  are all positive and 
they approach  zero exponential ly as i ~ oe. W h e n / 3  "-~ /?c,, (A), m i behaves 
as ( [ f l  - flc,~(A)]/flc,,(A)}l/2. See also Ref. 17, Appendix  A. 

NOTE ADDED IN PROOF 

After  submit t ing this pape r  for publicat ion,  we learned that  the calcu- 
lation of the magnet iza t ion  profile in the "scaling limit" (see Section 4, 
R e m a r k  4.4) for another  exactly soluble model,  the two-dimensional  Ising 
model  with n.n. interactions, has been pe r fo rmed  by Bariev. (18~ 
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